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Abstract. A new summability method was tested to calculate the critical exponentν of the
localization length for the symplectic case derived from the nonlinearσ -model. Although we
used the same series as Hikami and others, unlike them we were able to resum the series in two
dimensions (2D) and obtain the resultν ∼ 1. Values ofν in (2+ ε) dimensions seem to saturate
the Harris inequality up toε = 0.2.

1. Introduction

Anderson localization is known as a problem where the wavefunction localizes due to
a random potential scattering [1]. The critical behaviour of the localization transition
is described by the nonlinear (NL) σ -model [2]. TheNL σ -model explains successfully
various aspects of the Anderson localization, including the non-singular density of states
and three different universality classes—the orthogonal, unitary, and symplectic—depending
on whether time-reversal symmetry is preserved or spin-flip scattering occurs.

The critical exponentν describes the behaviour of the localization lengthλ near the
mobility edgeEc,

λ ∼ (Ec − E)−ν . (1)

To obtain critical exponents at the transition point in the framework of theNL σ -model, the
scheme of the minimal subtraction by the dimensional regularization is usually used. The
critical exponentν of the correlation length or the localization length is then given by the
relation

ν = − 1

β ′(tc)
(2)

wheretc is the zero of theβ function andβ ′ is the derivative ofβ with respect tot [3]. In
general, theβ function of theNL σ -model in (2+ ε) dimensions is given as

β(t) = εt −
∞∑

n=2

ant
n (3)
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where the coefficientsan do not depend onε anda2 6= 0 [4]. In the symplectic case, which
is the universality class corresponding to time-reversal symmetry and strong spin–orbit
coupling, theβ function to five-loop order is given by

βso(t) = εt + t2 − 3
4ζ(3)t5 − 27

64ζ(4)t6 + O(t7) (4)

whereζ is the Riemannζ -function [4].

2. Methods

To extract the critical exponentν, only the Borel–Pad́e method has been used so far [4].
The Borel summability method, when applied to the series of the form (3), consists of the
following transformation:

∞∑
n=1

ant
n −→ 1

t

∫ ∞

0
e−u/t

∞∑
n=1

an

un

n!
du. (5)

For finite series, relation (5) is useless since it is an identity. One can integrate term by
term, by using

1

t

∫ ∞

0
e−u/tun du = n!tn.

However, for infinite series the second form in (5) may have a much wider range of
applicability. For example, in the case of the series

∑∞
n=0 zn the second form converges in

the whole complex halfplane Rez < 1 despite the fact that the original series is divergent
for |z| > 1, outside its radius of convergence. Having only a finite number of a series
up to orderN at one’s disposal, such as in the present case, the integrand in (5) can be
approximated by the Padé approximation which generates an infinite power series coinciding
up to orderN with the original series. The resulting method is called the Borel–Padé method.

Several years ago we developed a method [5] which consists of a similar transformation
as (5), but with e−u/t replaced by e−eu/t

andn! replaced by

µ(n) =
∫ ∞

0
e−eu

un du. (6)

Momentsµ(n) are increasing more slowly thenn! (they behave roughly as lnn(n) when
n → ∞), but as far as analytic properties are concerned this results in a wider region
of convergence. Iff (z) denotes an analytic continuation of a power series with a non-
zero radius of convergence, then our method gives a finite resultf (z) in the so-called
Mittag–Leffler star off (z) [5]. In the case of the series

∑∞
n=0 zn it means that our method

converges in the whole complex plane except for the interval [1, ∞). For a general power
series, the Mittag–Leffler star is obtained in the following way (see figure 1). First, one
draws rays from the origin and passing through singularities off (z). The Mittage–Leffler
star is the region which remains in the complex plane after the part of the ray beyond
each singularity is removed. We recall that the actual region of convergence for the Borel
method is a polygon, which is obtained by removing halfplanes from the complex plane
which lie behind a perpendicular to the ray from the origin passing through the singularity
(see figure 1). If one has only a finite number of terms of a series at one’s disposal, one
can use the Padé approximation of the integrand in (5) in the same way as with the Borel
method. We shall call the resulting method theµ-Pad́e method. Both the Borel method and
our method are so-called analytic moment-constant summability methods [5, 6]. They can
be applied to both convergent and divergent series.
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Figure 1. (a) The actual region of convergence for the Borel
method in the case of the Taylor series of an analytic functionf (z)

is a polygon which is obtained by removing halfplanes from the
complex plane which lie behind a perpendicular to the ray from
the origin passing through the singularity (a cross). (b) In the case
of our method, the actual region of convergence is obtained by
only removing the part of the ray behind each singularity. Such
a region is called the Mittage–Leffler star.

3. Results

One of the motivations in using theµ-Pad́e method for the symplectic case was the fact
that the series (4) is not Borel summable and the Borel–Padé method does not work for this
case [4]. In the2D symplectic case, to leading order, so-called weak anti-localization occurs
[7] and until recently it appeared that this result remained unchanged by higher order terms.
This included the strange result that there is no fixed point (and hence no transition and
no localization) for the2D symplectic case [8]. We have applied the diagonal [3/3]µ-Pad́e
method directly to theβso(t) and looked for its zerotc(ε) as a function ofε (see figure 2).
By using relation (2) we have found that asε ↓ 0, the critical exponents

ν → 0.98 (7)

in the 2D symplectic case. Theβ function for the orthogonal universality class is related to
theβ function for the symplectic universality class by substitutingt in equation (4) by−2t

[4]. Therefore, because the diagonal [3/3]µ-Pad́e method works for the symplectic case, it
cannot be applied to the orthogonal case, since the Padé approximant, having a polynomial
of order three in the denominator, develops a pole in the integration interval. A similar
statement applies to the diagonal [3/3] Borel–Padé method, which, in contrast, works for
the orthogonal case and therefore does not for the symplectic case [4].

In the following, we have scanned theε-expansion by varyingε = d − 2, whered is
the space dimension, within the intervalε ∈ (0, 1]. Results are presented in table 1.
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Figure 2. Typical behaviour of theβ function for the symplectic
case after it has been resummed by the diagonalµ-Pad́e method.

Table 1. β ′(tc) and the critical coefficientν as a function ofε.

ε 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

β ′(tc) −1.05 −1.14 −1.27 −1.47 −1.74 −2.1 −2.58 −3.2 −0.50
ν 0.95 0.88 0.79 0.68 0.57 0.48 0.39 0.31 2

4. Discussion

We have checked whether our results satisfy the Harris inequality [9],

ν > 2

d
(8)

derived under the assumption of the validity of one-parameter scaling. Up to an error due
to the finite number of terms forβso(t) (see (4)), our result seems to saturate the inequality
(8) up to ε = 0.2. As ε increases further,ν ceases to satisfy (8) and eventually around
ε = 0.9 the diagonalµ-Pad́e method collapses. The reason is that the Padé approximant
develops a pole on the integration interval. Forε = 1, theµ-Pad́e method starts to work
again and our result

ν = 2 (9)

satisfies inequality (8). However, because of the collapse of the diagonalµ-Pad́e method at
ε = 0.9, this result must be taken with some reservations. Since theε expansion (3) is an
asymptotic expansion, it is difficult to make an extrapolation too far away from the limiting
point (D = 2 in our case), given that the extrapolation is based on incomplete knowledge of
theβ function. Nevertheless, it provides a substantial improvement over previous analytical
results, and there is always a chance that further terms of theβ function will make our
results better. It is worthwhile mentioning that the actual convergence or divergence of an
asymptotic series is not as important for applicability of an analytic summability method as
whether asymptotic series obey thestrong asymptotic conditions(SAC) [5, 10]. The latter
ensure that there exists only one function with the required analytic properties and a given
asymptotic expansion. For example, given a convergent asymptotic series

∑∞
0 zn in the

right complex halfplane, without the validity of theSAC the sum of this series can be any
function of the form 1/(1 − z) + AsBe−C/z with A, B, andC > 0 arbitrary constants.

In the 2D symplectic case, our result (7) for the critical exponentν is smaller than
ν ∼ 2.5 [11] or ν ∼ 2.74 [12] obtained by numerical scaling analysis using, respectively,
the Evangelou–Ziman model [13] or Ando’s model [14]. A similar disagreement between
field theory predictions and tight-binding scaling methods is also known to exist for the3D

orthogonal case, where the former yieldsν ∼ 1 and the latterν ∼ 1.4. It is interesting to
note that a disagreement also exists for the results for the critical exponentν obtained by the
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numerical scaling analysis and that obtained by the best fit to the critical level distribution
P(s) in the 2D symplectic case at the mobility edge [15],

P(s) = Bs4 exp(−Asγ ). (10)

Here parameterγ is given by

γ = 1 − 1

ν∗d
(11)

d is the dimensionality of the system,A is a numerical factor which depends on the
dimensionality, andB is to be found from the normalization conditions [15]. The critical
exponentν∗ in (11) should be identical toν. However, recent numerical analysis implies
thatν∗ = 0.7±0.08 [16] orν∗ ∼ 0.77 [17] for Ando’s model [14], andν∗ = 0.83±0.7 [11]
for the Evangelou–Ziman model [13]. A comparison with (8) shows thatν∗ even violates
the Harris inequality [9] (however,ν∗ satisfies a weaker relation,ν∗ > 1/d, which suffices
to derive (10)). Surprisingly enough, our result (7) for the critical exponentν in the 2D

symplectic case for the localization length is actually very close toν∗ and it seems to be
tempting to say that the critical exponent obtained from theNL σ -model is justν∗. That,
however, would be premature, because in the3D orthogonal case the overall behaviour of
P(s) has been claimed to be well fitted withν obtained from the numerical scaling analysis
[18].

To conclude, we have demonstrated that theµ-Pad́e method can be useful in determining
critical exponents. In principle, our method can be used as an alternative to the Borel–Padé
summability method, whenever a result is obtained in the form of a power (asymptotic)
series, such as in the case of high-temperature expansion, weak coupling expansion, etc.
In connection with disordered systems, it would be interesting to use our method for a
calculation of the density of states and the diffusion constant for the problem of an electron
moving in two dimensions in the lowest Landau level and in a random potential, which
has been analysed by the Borel–Padé method [19]. It was suggested that our summability
method should be used for the location of critical points [10], since it finds singularities of an
analytic function much more precisely than the Borel method (cf figure 1). An application
of the µ-Pad́e method to other problems will be given elsewhere.
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